Properties

Label 1309.1194
Modulus $1309$
Conductor $1309$
Order $60$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1309, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,54,45]))
 
pari: [g,chi] = znchar(Mod(1194,1309))
 

Basic properties

Modulus: \(1309\)
Conductor: \(1309\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1309.cp

\(\chi_{1309}(30,\cdot)\) \(\chi_{1309}(72,\cdot)\) \(\chi_{1309}(123,\cdot)\) \(\chi_{1309}(149,\cdot)\) \(\chi_{1309}(200,\cdot)\) \(\chi_{1309}(310,\cdot)\) \(\chi_{1309}(387,\cdot)\) \(\chi_{1309}(480,\cdot)\) \(\chi_{1309}(557,\cdot)\) \(\chi_{1309}(667,\cdot)\) \(\chi_{1309}(744,\cdot)\) \(\chi_{1309}(1075,\cdot)\) \(\chi_{1309}(1152,\cdot)\) \(\chi_{1309}(1194,\cdot)\) \(\chi_{1309}(1262,\cdot)\) \(\chi_{1309}(1271,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1123,596,309)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{9}{10}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(12\)\(13\)
\( \chi_{ 1309 }(1194, a) \) \(-1\)\(1\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{9}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1309 }(1194,a) \;\) at \(\;a = \) e.g. 2