Properties

Label 1309.180
Modulus 13091309
Conductor 13091309
Order 240240
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1309, base_ring=CyclotomicField(240)) M = H._module chi = DirichletCharacter(H, M([200,48,45]))
 
Copy content pari:[g,chi] = znchar(Mod(180,1309))
 

Basic properties

Modulus: 13091309
Conductor: 13091309
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 240240
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1309.da

χ1309(3,)\chi_{1309}(3,\cdot) χ1309(5,)\chi_{1309}(5,\cdot) χ1309(31,)\chi_{1309}(31,\cdot) χ1309(75,)\chi_{1309}(75,\cdot) χ1309(80,)\chi_{1309}(80,\cdot) χ1309(82,)\chi_{1309}(82,\cdot) χ1309(108,)\chi_{1309}(108,\cdot) χ1309(124,)\chi_{1309}(124,\cdot) χ1309(159,)\chi_{1309}(159,\cdot) χ1309(180,)\chi_{1309}(180,\cdot) χ1309(192,)\chi_{1309}(192,\cdot) χ1309(201,)\chi_{1309}(201,\cdot) χ1309(262,)\chi_{1309}(262,\cdot) χ1309(269,)\chi_{1309}(269,\cdot) χ1309(278,)\chi_{1309}(278,\cdot) χ1309(311,)\chi_{1309}(311,\cdot) χ1309(313,)\chi_{1309}(313,\cdot) χ1309(334,)\chi_{1309}(334,\cdot) χ1309(346,)\chi_{1309}(346,\cdot) χ1309(367,)\chi_{1309}(367,\cdot) χ1309(388,)\chi_{1309}(388,\cdot) χ1309(411,)\chi_{1309}(411,\cdot) χ1309(432,)\chi_{1309}(432,\cdot) χ1309(465,)\chi_{1309}(465,\cdot) χ1309(488,)\chi_{1309}(488,\cdot) χ1309(500,)\chi_{1309}(500,\cdot) χ1309(521,)\chi_{1309}(521,\cdot) χ1309(537,)\chi_{1309}(537,\cdot) χ1309(598,)\chi_{1309}(598,\cdot) χ1309(619,)\chi_{1309}(619,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ240)\Q(\zeta_{240})
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

(1123,596,309)(1123,596,309)(e(56),e(15),e(316))(e\left(\frac{5}{6}\right),e\left(\frac{1}{5}\right),e\left(\frac{3}{16}\right))

First values

aa 1-11122334455668899101012121313
χ1309(180,a) \chi_{ 1309 }(180, a) 1111e(59120)e\left(\frac{59}{120}\right)e(149240)e\left(\frac{149}{240}\right)e(5960)e\left(\frac{59}{60}\right)e(217240)e\left(\frac{217}{240}\right)e(980)e\left(\frac{9}{80}\right)e(1940)e\left(\frac{19}{40}\right)e(29120)e\left(\frac{29}{120}\right)e(1948)e\left(\frac{19}{48}\right)e(2948)e\left(\frac{29}{48}\right)e(920)e\left(\frac{9}{20}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1309(180,a)   \chi_{ 1309 }(180,a) \; at   a=\;a = e.g. 2