sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1309, base_ring=CyclotomicField(240))
M = H._module
chi = DirichletCharacter(H, M([200,48,45]))
pari:[g,chi] = znchar(Mod(180,1309))
Modulus: | 1309 | |
Conductor: | 1309 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 240 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1309(3,⋅)
χ1309(5,⋅)
χ1309(31,⋅)
χ1309(75,⋅)
χ1309(80,⋅)
χ1309(82,⋅)
χ1309(108,⋅)
χ1309(124,⋅)
χ1309(159,⋅)
χ1309(180,⋅)
χ1309(192,⋅)
χ1309(201,⋅)
χ1309(262,⋅)
χ1309(269,⋅)
χ1309(278,⋅)
χ1309(311,⋅)
χ1309(313,⋅)
χ1309(334,⋅)
χ1309(346,⋅)
χ1309(367,⋅)
χ1309(388,⋅)
χ1309(411,⋅)
χ1309(432,⋅)
χ1309(465,⋅)
χ1309(488,⋅)
χ1309(500,⋅)
χ1309(521,⋅)
χ1309(537,⋅)
χ1309(598,⋅)
χ1309(619,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1123,596,309) → (e(65),e(51),e(163))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ1309(180,a) |
1 | 1 | e(12059) | e(240149) | e(6059) | e(240217) | e(809) | e(4019) | e(12029) | e(4819) | e(4829) | e(209) |
sage:chi.jacobi_sum(n)