Properties

Label 1309.180
Modulus $1309$
Conductor $1309$
Order $240$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1309, base_ring=CyclotomicField(240))
 
M = H._module
 
chi = DirichletCharacter(H, M([200,48,45]))
 
pari: [g,chi] = znchar(Mod(180,1309))
 

Basic properties

Modulus: \(1309\)
Conductor: \(1309\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(240\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1309.da

\(\chi_{1309}(3,\cdot)\) \(\chi_{1309}(5,\cdot)\) \(\chi_{1309}(31,\cdot)\) \(\chi_{1309}(75,\cdot)\) \(\chi_{1309}(80,\cdot)\) \(\chi_{1309}(82,\cdot)\) \(\chi_{1309}(108,\cdot)\) \(\chi_{1309}(124,\cdot)\) \(\chi_{1309}(159,\cdot)\) \(\chi_{1309}(180,\cdot)\) \(\chi_{1309}(192,\cdot)\) \(\chi_{1309}(201,\cdot)\) \(\chi_{1309}(262,\cdot)\) \(\chi_{1309}(269,\cdot)\) \(\chi_{1309}(278,\cdot)\) \(\chi_{1309}(311,\cdot)\) \(\chi_{1309}(313,\cdot)\) \(\chi_{1309}(334,\cdot)\) \(\chi_{1309}(346,\cdot)\) \(\chi_{1309}(367,\cdot)\) \(\chi_{1309}(388,\cdot)\) \(\chi_{1309}(411,\cdot)\) \(\chi_{1309}(432,\cdot)\) \(\chi_{1309}(465,\cdot)\) \(\chi_{1309}(488,\cdot)\) \(\chi_{1309}(500,\cdot)\) \(\chi_{1309}(521,\cdot)\) \(\chi_{1309}(537,\cdot)\) \(\chi_{1309}(598,\cdot)\) \(\chi_{1309}(619,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{240})$
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

\((1123,596,309)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{1}{5}\right),e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(12\)\(13\)
\( \chi_{ 1309 }(180, a) \) \(1\)\(1\)\(e\left(\frac{59}{120}\right)\)\(e\left(\frac{149}{240}\right)\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{217}{240}\right)\)\(e\left(\frac{9}{80}\right)\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{29}{120}\right)\)\(e\left(\frac{19}{48}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{9}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1309 }(180,a) \;\) at \(\;a = \) e.g. 2