Properties

Label 1323.325
Modulus 13231323
Conductor 77
Order 66
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(325,1323))
 

Basic properties

Modulus: 13231323
Conductor: 77
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ7(3,)\chi_{7}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1323.m

χ1323(325,)\chi_{1323}(325,\cdot) χ1323(460,)\chi_{1323}(460,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ7)\Q(\zeta_{7})

Values on generators

(785,1081)(785,1081)(1,e(16))(1,e\left(\frac{1}{6}\right))

First values

aa 1-11122445588101011111313161617171919
χ1323(325,a) \chi_{ 1323 }(325, a) 1-111e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)11e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ1323(325,a)   \chi_{ 1323 }(325,a) \; at   a=\;a = e.g. 2