Properties

Label 1323.802
Modulus 13231323
Conductor 6363
Order 33
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,4]))
 
pari: [g,chi] = znchar(Mod(802,1323))
 

Basic properties

Modulus: 13231323
Conductor: 6363
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ63(25,)\chi_{63}(25,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1323.h

χ1323(226,)\chi_{1323}(226,\cdot) χ1323(802,)\chi_{1323}(802,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 3.3.3969.1

Values on generators

(785,1081)(785,1081)(e(23),e(23))(e\left(\frac{2}{3}\right),e\left(\frac{2}{3}\right))

First values

aa 1-11122445588101011111313161617171919
χ1323(802,a) \chi_{ 1323 }(802, a) 11111111e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ1323(802,a)   \chi_{ 1323 }(802,a) \; at   a=\;a = e.g. 2