sage: H = DirichletGroup(132300)
pari: g = idealstar(,132300,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 30240 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{6}\times C_{1260}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{132300}(66151,\cdot)$, $\chi_{132300}(122501,\cdot)$, $\chi_{132300}(15877,\cdot)$, $\chi_{132300}(54001,\cdot)$ |
First 32 of 30240 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{132300}(1,\cdot)\) | 132300.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{132300}(11,\cdot)\) | 132300.bbc | 630 | yes | \(1\) | \(1\) | \(e\left(\frac{247}{315}\right)\) | \(e\left(\frac{128}{315}\right)\) | \(e\left(\frac{3}{70}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{137}{315}\right)\) | \(e\left(\frac{293}{630}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{1}{105}\right)\) | \(e\left(\frac{481}{630}\right)\) | \(e\left(\frac{13}{126}\right)\) |
\(\chi_{132300}(13,\cdot)\) | 132300.bdd | 1260 | no | \(1\) | \(1\) | \(e\left(\frac{128}{315}\right)\) | \(e\left(\frac{673}{1260}\right)\) | \(e\left(\frac{277}{420}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{247}{1260}\right)\) | \(e\left(\frac{307}{630}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{151}{420}\right)\) | \(e\left(\frac{89}{630}\right)\) | \(e\left(\frac{187}{252}\right)\) |
\(\chi_{132300}(17,\cdot)\) | 132300.zt | 420 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{70}\right)\) | \(e\left(\frac{277}{420}\right)\) | \(e\left(\frac{349}{420}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{131}{140}\right)\) | \(e\left(\frac{89}{105}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{377}{420}\right)\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{55}{84}\right)\) |
\(\chi_{132300}(19,\cdot)\) | 132300.kx | 30 | no | \(1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{132300}(23,\cdot)\) | 132300.bcq | 1260 | yes | \(-1\) | \(1\) | \(e\left(\frac{137}{315}\right)\) | \(e\left(\frac{247}{1260}\right)\) | \(e\left(\frac{131}{140}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{823}{1260}\right)\) | \(e\left(\frac{314}{315}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{239}{420}\right)\) | \(e\left(\frac{101}{630}\right)\) | \(e\left(\frac{157}{252}\right)\) |
\(\chi_{132300}(29,\cdot)\) | 132300.bbr | 630 | no | \(-1\) | \(1\) | \(e\left(\frac{293}{630}\right)\) | \(e\left(\frac{307}{630}\right)\) | \(e\left(\frac{89}{105}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{314}{315}\right)\) | \(e\left(\frac{611}{630}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{199}{210}\right)\) | \(e\left(\frac{487}{630}\right)\) | \(e\left(\frac{37}{126}\right)\) |
\(\chi_{132300}(31,\cdot)\) | 132300.sc | 90 | no | \(1\) | \(1\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{132300}(37,\cdot)\) | 132300.zz | 420 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{105}\right)\) | \(e\left(\frac{151}{420}\right)\) | \(e\left(\frac{377}{420}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{239}{420}\right)\) | \(e\left(\frac{199}{210}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{181}{420}\right)\) | \(e\left(\frac{94}{105}\right)\) | \(e\left(\frac{55}{84}\right)\) |
\(\chi_{132300}(41,\cdot)\) | 132300.bbh | 630 | no | \(1\) | \(1\) | \(e\left(\frac{481}{630}\right)\) | \(e\left(\frac{89}{630}\right)\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{101}{630}\right)\) | \(e\left(\frac{487}{630}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{94}{105}\right)\) | \(e\left(\frac{67}{315}\right)\) | \(e\left(\frac{58}{63}\right)\) |
\(\chi_{132300}(43,\cdot)\) | 132300.yx | 252 | no | \(1\) | \(1\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{187}{252}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{157}{252}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{125}{252}\right)\) |
\(\chi_{132300}(47,\cdot)\) | 132300.bcx | 1260 | yes | \(1\) | \(1\) | \(e\left(\frac{289}{315}\right)\) | \(e\left(\frac{239}{1260}\right)\) | \(e\left(\frac{361}{420}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{821}{1260}\right)\) | \(e\left(\frac{73}{315}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{111}{140}\right)\) | \(e\left(\frac{251}{315}\right)\) | \(e\left(\frac{131}{252}\right)\) |
\(\chi_{132300}(53,\cdot)\) | 132300.bam | 420 | no | \(1\) | \(1\) | \(e\left(\frac{131}{210}\right)\) | \(e\left(\frac{71}{140}\right)\) | \(e\left(\frac{1}{420}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{167}{420}\right)\) | \(e\left(\frac{17}{35}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{323}{420}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{19}{28}\right)\) |
\(\chi_{132300}(59,\cdot)\) | 132300.bcb | 630 | yes | \(-1\) | \(1\) | \(e\left(\frac{218}{315}\right)\) | \(e\left(\frac{232}{315}\right)\) | \(e\left(\frac{1}{210}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{630}\right)\) | \(e\left(\frac{157}{630}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{61}{70}\right)\) | \(e\left(\frac{52}{315}\right)\) | \(e\left(\frac{61}{63}\right)\) |
\(\chi_{132300}(61,\cdot)\) | 132300.bbz | 630 | no | \(-1\) | \(1\) | \(e\left(\frac{262}{315}\right)\) | \(e\left(\frac{601}{630}\right)\) | \(e\left(\frac{59}{210}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{167}{315}\right)\) | \(e\left(\frac{64}{315}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{151}{630}\right)\) | \(e\left(\frac{8}{63}\right)\) |
\(\chi_{132300}(67,\cdot)\) | 132300.vx | 180 | no | \(1\) | \(1\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{1}{36}\right)\) |
\(\chi_{132300}(71,\cdot)\) | 132300.wv | 210 | no | \(1\) | \(1\) | \(e\left(\frac{83}{105}\right)\) | \(e\left(\frac{97}{105}\right)\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{103}{105}\right)\) | \(e\left(\frac{67}{210}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{29}{210}\right)\) | \(e\left(\frac{11}{42}\right)\) |
\(\chi_{132300}(73,\cdot)\) | 132300.bad | 420 | no | \(1\) | \(1\) | \(e\left(\frac{74}{105}\right)\) | \(e\left(\frac{359}{420}\right)\) | \(e\left(\frac{73}{420}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{361}{420}\right)\) | \(e\left(\frac{131}{210}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{59}{420}\right)\) | \(e\left(\frac{157}{210}\right)\) | \(e\left(\frac{17}{84}\right)\) |
\(\chi_{132300}(79,\cdot)\) | 132300.rz | 90 | no | \(-1\) | \(1\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{132300}(83,\cdot)\) | 132300.bcv | 1260 | yes | \(1\) | \(1\) | \(e\left(\frac{61}{315}\right)\) | \(e\left(\frac{461}{1260}\right)\) | \(e\left(\frac{59}{420}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1139}{1260}\right)\) | \(e\left(\frac{67}{315}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{227}{420}\right)\) | \(e\left(\frac{239}{315}\right)\) | \(e\left(\frac{65}{252}\right)\) |
\(\chi_{132300}(89,\cdot)\) | 132300.wk | 210 | no | \(1\) | \(1\) | \(e\left(\frac{61}{70}\right)\) | \(e\left(\frac{11}{105}\right)\) | \(e\left(\frac{19}{210}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{131}{210}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{47}{210}\right)\) | \(e\left(\frac{26}{105}\right)\) | \(e\left(\frac{19}{42}\right)\) |
\(\chi_{132300}(97,\cdot)\) | 132300.wc | 180 | no | \(1\) | \(1\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{77}{180}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{23}{36}\right)\) |
\(\chi_{132300}(101,\cdot)\) | 132300.tl | 126 | no | \(1\) | \(1\) | \(e\left(\frac{1}{126}\right)\) | \(e\left(\frac{113}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{23}{126}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) |
\(\chi_{132300}(103,\cdot)\) | 132300.bdn | 1260 | yes | \(-1\) | \(1\) | \(e\left(\frac{523}{630}\right)\) | \(e\left(\frac{829}{1260}\right)\) | \(e\left(\frac{67}{140}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{181}{1260}\right)\) | \(e\left(\frac{571}{630}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{383}{420}\right)\) | \(e\left(\frac{617}{630}\right)\) | \(e\left(\frac{1}{252}\right)\) |
\(\chi_{132300}(107,\cdot)\) | 132300.qy | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{15}{28}\right)\) |
\(\chi_{132300}(109,\cdot)\) | 132300.wt | 210 | no | \(1\) | \(1\) | \(e\left(\frac{31}{105}\right)\) | \(e\left(\frac{51}{70}\right)\) | \(e\left(\frac{191}{210}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{187}{210}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{163}{210}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{3}{14}\right)\) |
\(\chi_{132300}(113,\cdot)\) | 132300.bcy | 1260 | no | \(1\) | \(1\) | \(e\left(\frac{241}{630}\right)\) | \(e\left(\frac{1063}{1260}\right)\) | \(e\left(\frac{157}{420}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{817}{1260}\right)\) | \(e\left(\frac{11}{315}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{31}{420}\right)\) | \(e\left(\frac{149}{630}\right)\) | \(e\left(\frac{163}{252}\right)\) |
\(\chi_{132300}(121,\cdot)\) | 132300.zq | 315 | no | \(1\) | \(1\) | \(e\left(\frac{179}{315}\right)\) | \(e\left(\frac{256}{315}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{274}{315}\right)\) | \(e\left(\frac{293}{315}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{2}{105}\right)\) | \(e\left(\frac{166}{315}\right)\) | \(e\left(\frac{13}{63}\right)\) |
\(\chi_{132300}(127,\cdot)\) | 132300.bai | 420 | no | \(1\) | \(1\) | \(e\left(\frac{23}{210}\right)\) | \(e\left(\frac{179}{420}\right)\) | \(e\left(\frac{51}{140}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{281}{420}\right)\) | \(e\left(\frac{101}{210}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{23}{140}\right)\) | \(e\left(\frac{101}{105}\right)\) | \(e\left(\frac{41}{84}\right)\) |
\(\chi_{132300}(131,\cdot)\) | 132300.bcj | 630 | yes | \(-1\) | \(1\) | \(e\left(\frac{281}{315}\right)\) | \(e\left(\frac{443}{630}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{226}{315}\right)\) | \(e\left(\frac{619}{630}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{53}{105}\right)\) | \(e\left(\frac{199}{315}\right)\) | \(e\left(\frac{101}{126}\right)\) |
\(\chi_{132300}(137,\cdot)\) | 132300.bdm | 1260 | no | \(1\) | \(1\) | \(e\left(\frac{191}{630}\right)\) | \(e\left(\frac{893}{1260}\right)\) | \(e\left(\frac{129}{140}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{407}{1260}\right)\) | \(e\left(\frac{166}{315}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{121}{420}\right)\) | \(e\left(\frac{559}{630}\right)\) | \(e\left(\frac{209}{252}\right)\) |
\(\chi_{132300}(139,\cdot)\) | 132300.bbq | 630 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{630}\right)\) | \(e\left(\frac{118}{315}\right)\) | \(e\left(\frac{52}{105}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{187}{315}\right)\) | \(e\left(\frac{44}{315}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{167}{210}\right)\) | \(e\left(\frac{281}{630}\right)\) | \(e\left(\frac{37}{63}\right)\) |