Properties

Label 132300.66151
Modulus 132300132300
Conductor 44
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,0,0]))
 
pari: [g,chi] = znchar(Mod(66151,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 44
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ4(3,)\chi_{4}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.h

χ132300(66151,)\chi_{132300}(66151,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(1)\Q(\sqrt{-1})

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,1,1,1)(-1,1,1,1)

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(66151,a) \chi_{ 132300 }(66151, a) 1-1111-111111-11-1111-111111-1
sage: chi.jacobi_sum(n)
 
χ132300(66151,a)   \chi_{ 132300 }(66151,a) \; at   a=\;a = e.g. 2