Properties

Label 132300.131
Modulus 132300132300
Conductor 132300132300
Order 630630
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
 
M = H._module
 
chi = DirichletCharacter(H, M([315,385,252,615]))
 
pari: [g,chi] = znchar(Mod(131,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 132300132300
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 630630
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bcj

χ132300(131,)\chi_{132300}(131,\cdot) χ132300(731,)\chi_{132300}(731,\cdot) χ132300(3911,)\chi_{132300}(3911,\cdot) χ132300(4511,)\chi_{132300}(4511,\cdot) χ132300(5171,)\chi_{132300}(5171,\cdot) χ132300(5771,)\chi_{132300}(5771,\cdot) χ132300(6431,)\chi_{132300}(6431,\cdot) χ132300(7031,)\chi_{132300}(7031,\cdot) χ132300(7691,)\chi_{132300}(7691,\cdot) χ132300(8291,)\chi_{132300}(8291,\cdot) χ132300(11471,)\chi_{132300}(11471,\cdot) χ132300(12071,)\chi_{132300}(12071,\cdot) χ132300(12731,)\chi_{132300}(12731,\cdot) χ132300(13331,)\chi_{132300}(13331,\cdot) χ132300(13991,)\chi_{132300}(13991,\cdot) χ132300(14591,)\chi_{132300}(14591,\cdot) χ132300(16511,)\chi_{132300}(16511,\cdot) χ132300(17111,)\chi_{132300}(17111,\cdot) χ132300(17771,)\chi_{132300}(17771,\cdot) χ132300(18371,)\chi_{132300}(18371,\cdot) χ132300(20291,)\chi_{132300}(20291,\cdot) χ132300(20891,)\chi_{132300}(20891,\cdot) χ132300(22811,)\chi_{132300}(22811,\cdot) χ132300(23411,)\chi_{132300}(23411,\cdot) χ132300(24071,)\chi_{132300}(24071,\cdot) χ132300(24671,)\chi_{132300}(24671,\cdot) χ132300(25331,)\chi_{132300}(25331,\cdot) χ132300(25931,)\chi_{132300}(25931,\cdot) χ132300(26591,)\chi_{132300}(26591,\cdot) χ132300(27191,)\chi_{132300}(27191,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ315)\Q(\zeta_{315})
Fixed field: Number field defined by a degree 630 polynomial (not computed)

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(1118),e(25),e(4142))(-1,e\left(\frac{11}{18}\right),e\left(\frac{2}{5}\right),e\left(\frac{41}{42}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(131,a) \chi_{ 132300 }(131, a) 1-111e(281315)e\left(\frac{281}{315}\right)e(443630)e\left(\frac{443}{630}\right)e(2735)e\left(\frac{27}{35}\right)e(15)e\left(\frac{1}{5}\right)e(226315)e\left(\frac{226}{315}\right)e(619630)e\left(\frac{619}{630}\right)e(3445)e\left(\frac{34}{45}\right)e(53105)e\left(\frac{53}{105}\right)e(199315)e\left(\frac{199}{315}\right)e(101126)e\left(\frac{101}{126}\right)
sage: chi.jacobi_sum(n)
 
χ132300(131,a)   \chi_{ 132300 }(131,a) \; at   a=\;a = e.g. 2