Properties

Label 132300.131
Modulus $132300$
Conductor $132300$
Order $630$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
 
M = H._module
 
chi = DirichletCharacter(H, M([315,385,252,615]))
 
pari: [g,chi] = znchar(Mod(131,132300))
 

Basic properties

Modulus: \(132300\)
Conductor: \(132300\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(630\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bcj

\(\chi_{132300}(131,\cdot)\) \(\chi_{132300}(731,\cdot)\) \(\chi_{132300}(3911,\cdot)\) \(\chi_{132300}(4511,\cdot)\) \(\chi_{132300}(5171,\cdot)\) \(\chi_{132300}(5771,\cdot)\) \(\chi_{132300}(6431,\cdot)\) \(\chi_{132300}(7031,\cdot)\) \(\chi_{132300}(7691,\cdot)\) \(\chi_{132300}(8291,\cdot)\) \(\chi_{132300}(11471,\cdot)\) \(\chi_{132300}(12071,\cdot)\) \(\chi_{132300}(12731,\cdot)\) \(\chi_{132300}(13331,\cdot)\) \(\chi_{132300}(13991,\cdot)\) \(\chi_{132300}(14591,\cdot)\) \(\chi_{132300}(16511,\cdot)\) \(\chi_{132300}(17111,\cdot)\) \(\chi_{132300}(17771,\cdot)\) \(\chi_{132300}(18371,\cdot)\) \(\chi_{132300}(20291,\cdot)\) \(\chi_{132300}(20891,\cdot)\) \(\chi_{132300}(22811,\cdot)\) \(\chi_{132300}(23411,\cdot)\) \(\chi_{132300}(24071,\cdot)\) \(\chi_{132300}(24671,\cdot)\) \(\chi_{132300}(25331,\cdot)\) \(\chi_{132300}(25931,\cdot)\) \(\chi_{132300}(26591,\cdot)\) \(\chi_{132300}(27191,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{315})$
Fixed field: Number field defined by a degree 630 polynomial (not computed)

Values on generators

\((66151,122501,15877,54001)\) → \((-1,e\left(\frac{11}{18}\right),e\left(\frac{2}{5}\right),e\left(\frac{41}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 132300 }(131, a) \) \(-1\)\(1\)\(e\left(\frac{281}{315}\right)\)\(e\left(\frac{443}{630}\right)\)\(e\left(\frac{27}{35}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{226}{315}\right)\)\(e\left(\frac{619}{630}\right)\)\(e\left(\frac{34}{45}\right)\)\(e\left(\frac{53}{105}\right)\)\(e\left(\frac{199}{315}\right)\)\(e\left(\frac{101}{126}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 132300 }(131,a) \;\) at \(\;a = \) e.g. 2