Properties

Label 132300.75919
Modulus 132300132300
Conductor 1890018900
Order 9090
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,70,81,60]))
 
pari: [g,chi] = znchar(Mod(75919,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 1890018900
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 9090
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ18900(319,)\chi_{18900}(319,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.rz

χ132300(79,)\chi_{132300}(79,\cdot) χ132300(5359,)\chi_{132300}(5359,\cdot) χ132300(14179,)\chi_{132300}(14179,\cdot) χ132300(17719,)\chi_{132300}(17719,\cdot) χ132300(26539,)\chi_{132300}(26539,\cdot) χ132300(31819,)\chi_{132300}(31819,\cdot) χ132300(35359,)\chi_{132300}(35359,\cdot) χ132300(40639,)\chi_{132300}(40639,\cdot) χ132300(44179,)\chi_{132300}(44179,\cdot) χ132300(49459,)\chi_{132300}(49459,\cdot) χ132300(58279,)\chi_{132300}(58279,\cdot) χ132300(61819,)\chi_{132300}(61819,\cdot) χ132300(70639,)\chi_{132300}(70639,\cdot) χ132300(75919,)\chi_{132300}(75919,\cdot) χ132300(79459,)\chi_{132300}(79459,\cdot) χ132300(84739,)\chi_{132300}(84739,\cdot) χ132300(88279,)\chi_{132300}(88279,\cdot) χ132300(93559,)\chi_{132300}(93559,\cdot) χ132300(102379,)\chi_{132300}(102379,\cdot) χ132300(105919,)\chi_{132300}(105919,\cdot) χ132300(114739,)\chi_{132300}(114739,\cdot) χ132300(120019,)\chi_{132300}(120019,\cdot) χ132300(123559,)\chi_{132300}(123559,\cdot) χ132300(128839,)\chi_{132300}(128839,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(79),e(910),e(23))(-1,e\left(\frac{7}{9}\right),e\left(\frac{9}{10}\right),e\left(\frac{2}{3}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(75919,a) \chi_{ 132300 }(75919, a) 1-111e(6190)e\left(\frac{61}{90}\right)e(2990)e\left(\frac{29}{90}\right)e(130)e\left(\frac{1}{30}\right)e(1130)e\left(\frac{11}{30}\right)e(1345)e\left(\frac{13}{45}\right)e(2645)e\left(\frac{26}{45}\right)e(8390)e\left(\frac{83}{90}\right)e(110)e\left(\frac{1}{10}\right)e(3745)e\left(\frac{37}{45}\right)e(19)e\left(\frac{1}{9}\right)
sage: chi.jacobi_sum(n)
 
χ132300(75919,a)   \chi_{ 132300 }(75919,a) \; at   a=\;a = e.g. 2