from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,70,81,60]))
pari: [g,chi] = znchar(Mod(75919,132300))
χ132300(79,⋅)
χ132300(5359,⋅)
χ132300(14179,⋅)
χ132300(17719,⋅)
χ132300(26539,⋅)
χ132300(31819,⋅)
χ132300(35359,⋅)
χ132300(40639,⋅)
χ132300(44179,⋅)
χ132300(49459,⋅)
χ132300(58279,⋅)
χ132300(61819,⋅)
χ132300(70639,⋅)
χ132300(75919,⋅)
χ132300(79459,⋅)
χ132300(84739,⋅)
χ132300(88279,⋅)
χ132300(93559,⋅)
χ132300(102379,⋅)
χ132300(105919,⋅)
χ132300(114739,⋅)
χ132300(120019,⋅)
χ132300(123559,⋅)
χ132300(128839,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(66151,122501,15877,54001) → (−1,e(97),e(109),e(32))
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ132300(75919,a) |
−1 | 1 | e(9061) | e(9029) | e(301) | e(3011) | e(4513) | e(4526) | e(9083) | e(101) | e(4537) | e(91) |