sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1328, base_ring=CyclotomicField(164))
M = H._module
chi = DirichletCharacter(H, M([82,41,76]))
pari:[g,chi] = znchar(Mod(363,1328))
Modulus: | 1328 | |
Conductor: | 1328 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 164 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1328(3,⋅)
χ1328(11,⋅)
χ1328(27,⋅)
χ1328(51,⋅)
χ1328(59,⋅)
χ1328(75,⋅)
χ1328(99,⋅)
χ1328(123,⋅)
χ1328(131,⋅)
χ1328(147,⋅)
χ1328(187,⋅)
χ1328(195,⋅)
χ1328(203,⋅)
χ1328(227,⋅)
χ1328(235,⋅)
χ1328(243,⋅)
χ1328(259,⋅)
χ1328(275,⋅)
χ1328(339,⋅)
χ1328(355,⋅)
χ1328(363,⋅)
χ1328(395,⋅)
χ1328(419,⋅)
χ1328(427,⋅)
χ1328(443,⋅)
χ1328(451,⋅)
χ1328(459,⋅)
χ1328(483,⋅)
χ1328(507,⋅)
χ1328(515,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(831,997,417) → (−1,i,e(4119))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ1328(363,a) |
−1 | 1 | e(164101) | e(164125) | e(4129) | e(8219) | e(164143) | e(16471) | e(8231) | e(4139) | e(1645) | e(16453) |
sage:chi.jacobi_sum(n)