Properties

Label 1328.791
Modulus 13281328
Conductor 664664
Order 8282
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1328, base_ring=CyclotomicField(82)) M = H._module chi = DirichletCharacter(H, M([41,41,26]))
 
Copy content pari:[g,chi] = znchar(Mod(791,1328))
 

Basic properties

Modulus: 13281328
Conductor: 664664
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 8282
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ664(459,)\chi_{664}(459,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1328.p

χ1328(7,)\chi_{1328}(7,\cdot) χ1328(23,)\chi_{1328}(23,\cdot) χ1328(87,)\chi_{1328}(87,\cdot) χ1328(119,)\chi_{1328}(119,\cdot) χ1328(151,)\chi_{1328}(151,\cdot) χ1328(183,)\chi_{1328}(183,\cdot) χ1328(199,)\chi_{1328}(199,\cdot) χ1328(215,)\chi_{1328}(215,\cdot) χ1328(231,)\chi_{1328}(231,\cdot) χ1328(247,)\chi_{1328}(247,\cdot) χ1328(279,)\chi_{1328}(279,\cdot) χ1328(327,)\chi_{1328}(327,\cdot) χ1328(343,)\chi_{1328}(343,\cdot) χ1328(359,)\chi_{1328}(359,\cdot) χ1328(391,)\chi_{1328}(391,\cdot) χ1328(407,)\chi_{1328}(407,\cdot) χ1328(455,)\chi_{1328}(455,\cdot) χ1328(519,)\chi_{1328}(519,\cdot) χ1328(535,)\chi_{1328}(535,\cdot) χ1328(567,)\chi_{1328}(567,\cdot) χ1328(695,)\chi_{1328}(695,\cdot) χ1328(727,)\chi_{1328}(727,\cdot) χ1328(759,)\chi_{1328}(759,\cdot) χ1328(775,)\chi_{1328}(775,\cdot) χ1328(791,)\chi_{1328}(791,\cdot) χ1328(839,)\chi_{1328}(839,\cdot) χ1328(855,)\chi_{1328}(855,\cdot) χ1328(871,)\chi_{1328}(871,\cdot) χ1328(951,)\chi_{1328}(951,\cdot) χ1328(983,)\chi_{1328}(983,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ41)\Q(\zeta_{41})
Fixed field: Number field defined by a degree 82 polynomial

Values on generators

(831,997,417)(831,997,417)(1,1,e(1341))(-1,-1,e\left(\frac{13}{41}\right))

First values

aa 1-11133557799111113131515171719192121
χ1328(791,a) \chi_{ 1328 }(791, a) 1-111e(3441)e\left(\frac{34}{41}\right)e(582)e\left(\frac{5}{82}\right)e(382)e\left(\frac{3}{82}\right)e(2741)e\left(\frac{27}{41}\right)e(2541)e\left(\frac{25}{41}\right)e(7582)e\left(\frac{75}{82}\right)e(7382)e\left(\frac{73}{82}\right)e(3141)e\left(\frac{31}{41}\right)e(3741)e\left(\frac{37}{41}\right)e(7182)e\left(\frac{71}{82}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1328(791,a)   \chi_{ 1328 }(791,a) \; at   a=\;a = e.g. 2