sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1328, base_ring=CyclotomicField(82))
M = H._module
chi = DirichletCharacter(H, M([41,41,26]))
pari:[g,chi] = znchar(Mod(791,1328))
χ1328(7,⋅)
χ1328(23,⋅)
χ1328(87,⋅)
χ1328(119,⋅)
χ1328(151,⋅)
χ1328(183,⋅)
χ1328(199,⋅)
χ1328(215,⋅)
χ1328(231,⋅)
χ1328(247,⋅)
χ1328(279,⋅)
χ1328(327,⋅)
χ1328(343,⋅)
χ1328(359,⋅)
χ1328(391,⋅)
χ1328(407,⋅)
χ1328(455,⋅)
χ1328(519,⋅)
χ1328(535,⋅)
χ1328(567,⋅)
χ1328(695,⋅)
χ1328(727,⋅)
χ1328(759,⋅)
χ1328(775,⋅)
χ1328(791,⋅)
χ1328(839,⋅)
χ1328(855,⋅)
χ1328(871,⋅)
χ1328(951,⋅)
χ1328(983,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(831,997,417) → (−1,−1,e(4113))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ1328(791,a) |
−1 | 1 | e(4134) | e(825) | e(823) | e(4127) | e(4125) | e(8275) | e(8273) | e(4131) | e(4137) | e(8271) |
sage:chi.jacobi_sum(n)