Properties

Label 1332.1169
Modulus $1332$
Conductor $111$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,31]))
 
pari: [g,chi] = znchar(Mod(1169,1332))
 

Basic properties

Modulus: \(1332\)
Conductor: \(111\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{111}(59,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1332.dk

\(\chi_{1332}(17,\cdot)\) \(\chi_{1332}(89,\cdot)\) \(\chi_{1332}(161,\cdot)\) \(\chi_{1332}(449,\cdot)\) \(\chi_{1332}(557,\cdot)\) \(\chi_{1332}(701,\cdot)\) \(\chi_{1332}(809,\cdot)\) \(\chi_{1332}(1097,\cdot)\) \(\chi_{1332}(1169,\cdot)\) \(\chi_{1332}(1241,\cdot)\) \(\chi_{1332}(1277,\cdot)\) \(\chi_{1332}(1313,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: \(\Q(\zeta_{111})^+\)

Values on generators

\((667,1037,1297)\) → \((1,-1,e\left(\frac{31}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1332 }(1169, a) \) \(1\)\(1\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1332 }(1169,a) \;\) at \(\;a = \) e.g. 2