from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,18,31]))
pari: [g,chi] = znchar(Mod(1169,1332))
Basic properties
Modulus: | \(1332\) | |
Conductor: | \(111\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{111}(59,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1332.dk
\(\chi_{1332}(17,\cdot)\) \(\chi_{1332}(89,\cdot)\) \(\chi_{1332}(161,\cdot)\) \(\chi_{1332}(449,\cdot)\) \(\chi_{1332}(557,\cdot)\) \(\chi_{1332}(701,\cdot)\) \(\chi_{1332}(809,\cdot)\) \(\chi_{1332}(1097,\cdot)\) \(\chi_{1332}(1169,\cdot)\) \(\chi_{1332}(1241,\cdot)\) \(\chi_{1332}(1277,\cdot)\) \(\chi_{1332}(1313,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | \(\Q(\zeta_{111})^+\) |
Values on generators
\((667,1037,1297)\) → \((1,-1,e\left(\frac{31}{36}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 1332 }(1169, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) |
sage: chi.jacobi_sum(n)