Properties

Label 1332.1189
Modulus $1332$
Conductor $37$
Order $36$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,23]))
 
pari: [g,chi] = znchar(Mod(1189,1332))
 

Basic properties

Modulus: \(1332\)
Conductor: \(37\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{37}(5,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1332.dn

\(\chi_{1332}(109,\cdot)\) \(\chi_{1332}(217,\cdot)\) \(\chi_{1332}(505,\cdot)\) \(\chi_{1332}(577,\cdot)\) \(\chi_{1332}(649,\cdot)\) \(\chi_{1332}(685,\cdot)\) \(\chi_{1332}(721,\cdot)\) \(\chi_{1332}(757,\cdot)\) \(\chi_{1332}(829,\cdot)\) \(\chi_{1332}(901,\cdot)\) \(\chi_{1332}(1189,\cdot)\) \(\chi_{1332}(1297,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((667,1037,1297)\) → \((1,1,e\left(\frac{23}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1332 }(1189, a) \) \(-1\)\(1\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1332 }(1189,a) \;\) at \(\;a = \) e.g. 2