from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1332, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,6,16]))
chi.galois_orbit()
[g,chi] = znchar(Mod(895,1332))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1332\) | |
Conductor: | \(1332\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | 18.0.913434940869487972757111782935386107674624.2 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1332}(895,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1332}(1015,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1332}(1159,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1332}(1255,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1332}(1267,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-1\) | \(e\left(\frac{1}{9}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1332}(1291,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |