Properties

Label 1332.di
Modulus $1332$
Conductor $1332$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,24,23]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(79,1332))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1332\)
Conductor: \(1332\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.42263008854516662438364849366996329933779192991109099024104855333205078569792559831318528.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{1332}(79,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1332}(355,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1332}(427,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1332}(439,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1332}(535,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1332}(607,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1332}(727,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1332}(907,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1332}(943,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1332}(1075,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1332}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1332}(1219,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\)