from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1344, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,21,0,8]))
pari: [g,chi] = znchar(Mod(1129,1344))
Basic properties
Modulus: | \(1344\) | |
Conductor: | \(224\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{224}(205,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1344.cr
\(\chi_{1344}(25,\cdot)\) \(\chi_{1344}(121,\cdot)\) \(\chi_{1344}(361,\cdot)\) \(\chi_{1344}(457,\cdot)\) \(\chi_{1344}(697,\cdot)\) \(\chi_{1344}(793,\cdot)\) \(\chi_{1344}(1033,\cdot)\) \(\chi_{1344}(1129,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.329123002999201416128761938882499016916992.1 |
Values on generators
\((127,1093,449,577)\) → \((1,e\left(\frac{7}{8}\right),1,e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 1344 }(1129, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{24}\right)\) |
sage: chi.jacobi_sum(n)