Properties

Label 1344.cy
Modulus $1344$
Conductor $448$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,21,0,40]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(19,1344))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1344\)
Conductor: \(448\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 448.bm
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{1344}(19,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{48}\right)\)
\(\chi_{1344}(115,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{37}{48}\right)\)
\(\chi_{1344}(187,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{48}\right)\)
\(\chi_{1344}(283,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{48}\right)\)
\(\chi_{1344}(355,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{41}{48}\right)\)
\(\chi_{1344}(451,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{48}\right)\)
\(\chi_{1344}(523,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{48}\right)\)
\(\chi_{1344}(619,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{48}\right)\)
\(\chi_{1344}(691,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{48}\right)\)
\(\chi_{1344}(787,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{48}\right)\)
\(\chi_{1344}(859,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{35}{48}\right)\)
\(\chi_{1344}(955,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{43}{48}\right)\)
\(\chi_{1344}(1027,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{48}\right)\)
\(\chi_{1344}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{48}\right)\)
\(\chi_{1344}(1195,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{47}{48}\right)\)
\(\chi_{1344}(1291,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{48}\right)\)