Properties

Label 135.122
Modulus 135135
Conductor 135135
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([34,9]))
 
pari: [g,chi] = znchar(Mod(122,135))
 

Basic properties

Modulus: 135135
Conductor: 135135
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 135.q

χ135(2,)\chi_{135}(2,\cdot) χ135(23,)\chi_{135}(23,\cdot) χ135(32,)\chi_{135}(32,\cdot) χ135(38,)\chi_{135}(38,\cdot) χ135(47,)\chi_{135}(47,\cdot) χ135(68,)\chi_{135}(68,\cdot) χ135(77,)\chi_{135}(77,\cdot) χ135(83,)\chi_{135}(83,\cdot) χ135(92,)\chi_{135}(92,\cdot) χ135(113,)\chi_{135}(113,\cdot) χ135(122,)\chi_{135}(122,\cdot) χ135(128,)\chi_{135}(128,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ135)+\Q(\zeta_{135})^+

Values on generators

(56,82)(56,82)(e(1718),i)(e\left(\frac{17}{18}\right),i)

First values

aa 1-11122447788111113131414161617171919
χ135(122,a) \chi_{ 135 }(122, a) 1111e(736)e\left(\frac{7}{36}\right)e(718)e\left(\frac{7}{18}\right)e(1336)e\left(\frac{13}{36}\right)e(712)e\left(\frac{7}{12}\right)e(518)e\left(\frac{5}{18}\right)e(1136)e\left(\frac{11}{36}\right)e(59)e\left(\frac{5}{9}\right)e(79)e\left(\frac{7}{9}\right)e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ135(122,a)   \chi_{ 135 }(122,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ135(122,))   \tau_{ a }( \chi_{ 135 }(122,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ135(122,),χ135(n,))   J(\chi_{ 135 }(122,·),\chi_{ 135 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ135(122,))  K(a,b,\chi_{ 135 }(122,·)) \; at   a,b=\; a,b = e.g. 1,2