from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1350, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([25,18]))
pari: [g,chi] = znchar(Mod(71,1350))
Basic properties
Modulus: | \(1350\) | |
Conductor: | \(225\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{225}(221,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1350.x
\(\chi_{1350}(71,\cdot)\) \(\chi_{1350}(341,\cdot)\) \(\chi_{1350}(521,\cdot)\) \(\chi_{1350}(611,\cdot)\) \(\chi_{1350}(791,\cdot)\) \(\chi_{1350}(881,\cdot)\) \(\chi_{1350}(1061,\cdot)\) \(\chi_{1350}(1331,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 30.0.10495827164017277150673379537693108431994915008544921875.1 |
Values on generators
\((1001,1027)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{3}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1350 }(71, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) |
sage: chi.jacobi_sum(n)