Properties

Label 1350.71
Modulus $1350$
Conductor $225$
Order $30$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([25,18]))
 
pari: [g,chi] = znchar(Mod(71,1350))
 

Basic properties

Modulus: \(1350\)
Conductor: \(225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{225}(221,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1350.x

\(\chi_{1350}(71,\cdot)\) \(\chi_{1350}(341,\cdot)\) \(\chi_{1350}(521,\cdot)\) \(\chi_{1350}(611,\cdot)\) \(\chi_{1350}(791,\cdot)\) \(\chi_{1350}(881,\cdot)\) \(\chi_{1350}(1061,\cdot)\) \(\chi_{1350}(1331,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.10495827164017277150673379537693108431994915008544921875.1

Values on generators

\((1001,1027)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1350 }(71, a) \) \(-1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{17}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1350 }(71,a) \;\) at \(\;a = \) e.g. 2