from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1386, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0]))
pari: [g,chi] = znchar(Mod(1,1386))
Basic properties
Modulus: | \(1386\) | |
Conductor: | \(1\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(1\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | yes | |
Primitive: | no, induced from \(\chi_{1}(0,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1386.a
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q\) |
Fixed field: | \(\Q\) |
Values on generators
\((155,199,1135)\) → \((1,1,1)\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1386 }(1, a) \) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage: chi.jacobi_sum(n)