Properties

Label 1386.113
Modulus $1386$
Conductor $99$
Order $30$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([25,0,24]))
 
pari: [g,chi] = znchar(Mod(113,1386))
 

Basic properties

Modulus: \(1386\)
Conductor: \(99\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{99}(14,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1386.cm

\(\chi_{1386}(113,\cdot)\) \(\chi_{1386}(533,\cdot)\) \(\chi_{1386}(785,\cdot)\) \(\chi_{1386}(911,\cdot)\) \(\chi_{1386}(995,\cdot)\) \(\chi_{1386}(1037,\cdot)\) \(\chi_{1386}(1247,\cdot)\) \(\chi_{1386}(1373,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.29099190400267368949073680941341991556317731763.1

Values on generators

\((155,199,1135)\) → \((e\left(\frac{5}{6}\right),1,e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1386 }(113, a) \) \(-1\)\(1\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{17}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1386 }(113,a) \;\) at \(\;a = \) e.g. 2