from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1386, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([10,15,3]))
pari: [g,chi] = znchar(Mod(13,1386))
Basic properties
Modulus: | \(1386\) | |
Conductor: | \(693\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{693}(13,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1386.cj
\(\chi_{1386}(13,\cdot)\) \(\chi_{1386}(139,\cdot)\) \(\chi_{1386}(349,\cdot)\) \(\chi_{1386}(391,\cdot)\) \(\chi_{1386}(475,\cdot)\) \(\chi_{1386}(601,\cdot)\) \(\chi_{1386}(853,\cdot)\) \(\chi_{1386}(1273,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Values on generators
\((155,199,1135)\) → \((e\left(\frac{1}{3}\right),-1,e\left(\frac{1}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1386 }(13, a) \) | \(1\) | \(1\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) |
sage: chi.jacobi_sum(n)