from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1386, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([25,20,21]))
pari: [g,chi] = znchar(Mod(95,1386))
Basic properties
Modulus: | \(1386\) | |
Conductor: | \(693\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{693}(95,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1386.cz
\(\chi_{1386}(95,\cdot)\) \(\chi_{1386}(347,\cdot)\) \(\chi_{1386}(569,\cdot)\) \(\chi_{1386}(695,\cdot)\) \(\chi_{1386}(821,\cdot)\) \(\chi_{1386}(1073,\cdot)\) \(\chi_{1386}(1229,\cdot)\) \(\chi_{1386}(1355,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 30.30.3090436055135317762211701171120211681132969992614273937990792412553.1 |
Values on generators
\((155,199,1135)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1386 }(95, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) |
sage: chi.jacobi_sum(n)