Properties

Label 1386.95
Modulus $1386$
Conductor $693$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([25,20,21]))
 
pari: [g,chi] = znchar(Mod(95,1386))
 

Basic properties

Modulus: \(1386\)
Conductor: \(693\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{693}(95,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1386.cz

\(\chi_{1386}(95,\cdot)\) \(\chi_{1386}(347,\cdot)\) \(\chi_{1386}(569,\cdot)\) \(\chi_{1386}(695,\cdot)\) \(\chi_{1386}(821,\cdot)\) \(\chi_{1386}(1073,\cdot)\) \(\chi_{1386}(1229,\cdot)\) \(\chi_{1386}(1355,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.3090436055135317762211701171120211681132969992614273937990792412553.1

Values on generators

\((155,199,1135)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1386 }(95, a) \) \(1\)\(1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(-1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{4}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1386 }(95,a) \;\) at \(\;a = \) e.g. 2