from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1386, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,10,9]))
chi.galois_orbit()
[g,chi] = znchar(Mod(107,1386))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1386\) | |
Conductor: | \(231\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 231.be | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1386}(107,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{1386}(233,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1386}(305,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{1386}(359,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1386}(431,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1386}(557,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1386}(611,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{1386}(809,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) |