sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1428, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,6,10,9]))
pari:[g,chi] = znchar(Mod(803,1428))
Modulus: | 1428 | |
Conductor: | 1428 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 12 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1428(47,⋅)
χ1428(395,⋅)
χ1428(803,⋅)
χ1428(1067,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(715,953,409,1261) → (−1,−1,e(65),−i)
a |
−1 | 1 | 5 | 11 | 13 | 19 | 23 | 25 | 29 | 31 | 37 | 41 |
χ1428(803,a) |
−1 | 1 | e(125) | e(127) | −1 | e(61) | e(1211) | e(65) | i | e(121) | e(125) | i |
sage:chi.jacobi_sum(n)