Properties

Label 1428.803
Modulus 14281428
Conductor 14281428
Order 1212
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1428, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,6,10,9]))
 
Copy content pari:[g,chi] = znchar(Mod(803,1428))
 

Basic properties

Modulus: 14281428
Conductor: 14281428
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1212
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1428.bz

χ1428(47,)\chi_{1428}(47,\cdot) χ1428(395,)\chi_{1428}(395,\cdot) χ1428(803,)\chi_{1428}(803,\cdot) χ1428(1067,)\chi_{1428}(1067,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.100024909896188699799293952.1

Values on generators

(715,953,409,1261)(715,953,409,1261)(1,1,e(56),i)(-1,-1,e\left(\frac{5}{6}\right),-i)

First values

aa 1-11155111113131919232325252929313137374141
χ1428(803,a) \chi_{ 1428 }(803, a) 1-111e(512)e\left(\frac{5}{12}\right)e(712)e\left(\frac{7}{12}\right)1-1e(16)e\left(\frac{1}{6}\right)e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)iie(112)e\left(\frac{1}{12}\right)e(512)e\left(\frac{5}{12}\right)ii
Copy content sage:chi.jacobi_sum(n)
 
χ1428(803,a)   \chi_{ 1428 }(803,a) \; at   a=\;a = e.g. 2