Properties

Label 143.125
Modulus 143143
Conductor 143143
Order 2020
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(143, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,5]))
 
pari: [g,chi] = znchar(Mod(125,143))
 

Basic properties

Modulus: 143143
Conductor: 143143
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 143.r

χ143(5,)\chi_{143}(5,\cdot) χ143(31,)\chi_{143}(31,\cdot) χ143(47,)\chi_{143}(47,\cdot) χ143(60,)\chi_{143}(60,\cdot) χ143(70,)\chi_{143}(70,\cdot) χ143(86,)\chi_{143}(86,\cdot) χ143(125,)\chi_{143}(125,\cdot) χ143(135,)\chi_{143}(135,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(79,67)(79,67)(e(15),i)(e\left(\frac{1}{5}\right),i)

First values

aa 1-111223344556677889910101212
χ143(125,a) \chi_{ 143 }(125, a) 1-111e(920)e\left(\frac{9}{20}\right)e(35)e\left(\frac{3}{5}\right)e(910)e\left(\frac{9}{10}\right)e(120)e\left(\frac{1}{20}\right)e(120)e\left(\frac{1}{20}\right)e(320)e\left(\frac{3}{20}\right)e(720)e\left(\frac{7}{20}\right)e(15)e\left(\frac{1}{5}\right)1-11-1
sage: chi.jacobi_sum(n)
 
χ143(125,a)   \chi_{ 143 }(125,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ143(125,))   \tau_{ a }( \chi_{ 143 }(125,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ143(125,),χ143(n,))   J(\chi_{ 143 }(125,·),\chi_{ 143 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ143(125,))  K(a,b,\chi_{ 143 }(125,·)) \; at   a,b=\; a,b = e.g. 1,2