Properties

Label 1440.1013
Modulus $1440$
Conductor $1440$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,20,18]))
 
pari: [g,chi] = znchar(Mod(1013,1440))
 

Basic properties

Modulus: \(1440\)
Conductor: \(1440\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1440.du

\(\chi_{1440}(77,\cdot)\) \(\chi_{1440}(293,\cdot)\) \(\chi_{1440}(317,\cdot)\) \(\chi_{1440}(533,\cdot)\) \(\chi_{1440}(797,\cdot)\) \(\chi_{1440}(1013,\cdot)\) \(\chi_{1440}(1037,\cdot)\) \(\chi_{1440}(1253,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.5670414999880734763050754456076553289728000000000000000000.2

Values on generators

\((991,901,641,577)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{5}{6}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1440 }(1013, a) \) \(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{7}{24}\right)\)\(-i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{11}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1440 }(1013,a) \;\) at \(\;a = \) e.g. 2