from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1440, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,15,20,18]))
pari: [g,chi] = znchar(Mod(1013,1440))
Basic properties
Modulus: | \(1440\) | |
Conductor: | \(1440\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1440.du
\(\chi_{1440}(77,\cdot)\) \(\chi_{1440}(293,\cdot)\) \(\chi_{1440}(317,\cdot)\) \(\chi_{1440}(533,\cdot)\) \(\chi_{1440}(797,\cdot)\) \(\chi_{1440}(1013,\cdot)\) \(\chi_{1440}(1037,\cdot)\) \(\chi_{1440}(1253,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.5670414999880734763050754456076553289728000000000000000000.2 |
Values on generators
\((991,901,641,577)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{5}{6}\right),-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1440 }(1013, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage: chi.jacobi_sum(n)