Properties

Label 1440.19
Modulus 14401440
Conductor 160160
Order 88
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,7,0,4]))
 
pari: [g,chi] = znchar(Mod(19,1440))
 

Basic properties

Modulus: 14401440
Conductor: 160160
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ160(19,)\chi_{160}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1440.cm

χ1440(19,)\chi_{1440}(19,\cdot) χ1440(379,)\chi_{1440}(379,\cdot) χ1440(739,)\chi_{1440}(739,\cdot) χ1440(1099,)\chi_{1440}(1099,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.0.1342177280000.1

Values on generators

(991,901,641,577)(991,901,641,577)(1,e(78),1,1)(-1,e\left(\frac{7}{8}\right),1,-1)

First values

aa 1-11177111113131717191923232929313137374141
χ1440(19,a) \chi_{ 1440 }(19, a) 1-111i-ie(78)e\left(\frac{7}{8}\right)e(58)e\left(\frac{5}{8}\right)11e(58)e\left(\frac{5}{8}\right)iie(58)e\left(\frac{5}{8}\right)1-1e(38)e\left(\frac{3}{8}\right)ii
sage: chi.jacobi_sum(n)
 
χ1440(19,a)   \chi_{ 1440 }(19,a) \; at   a=\;a = e.g. 2