from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1440, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,15,20,0]))
pari: [g,chi] = znchar(Mod(491,1440))
Basic properties
Modulus: | \(1440\) | |
Conductor: | \(288\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{288}(203,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1440.ec
\(\chi_{1440}(11,\cdot)\) \(\chi_{1440}(131,\cdot)\) \(\chi_{1440}(371,\cdot)\) \(\chi_{1440}(491,\cdot)\) \(\chi_{1440}(731,\cdot)\) \(\chi_{1440}(851,\cdot)\) \(\chi_{1440}(1091,\cdot)\) \(\chi_{1440}(1211,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.1486465269728735333725176976133731985582456832.1 |
Values on generators
\((991,901,641,577)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{5}{6}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1440 }(491, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage: chi.jacobi_sum(n)