Properties

Label 1440.491
Modulus $1440$
Conductor $288$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,15,20,0]))
 
pari: [g,chi] = znchar(Mod(491,1440))
 

Basic properties

Modulus: \(1440\)
Conductor: \(288\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{288}(203,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1440.ec

\(\chi_{1440}(11,\cdot)\) \(\chi_{1440}(131,\cdot)\) \(\chi_{1440}(371,\cdot)\) \(\chi_{1440}(491,\cdot)\) \(\chi_{1440}(731,\cdot)\) \(\chi_{1440}(851,\cdot)\) \(\chi_{1440}(1091,\cdot)\) \(\chi_{1440}(1211,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.1486465269728735333725176976133731985582456832.1

Values on generators

\((991,901,641,577)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{5}{6}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1440 }(491, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{1}{24}\right)\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{11}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1440 }(491,a) \;\) at \(\;a = \) e.g. 2