from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1444, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,16]))
pari: [g,chi] = znchar(Mod(423,1444))
Basic properties
Modulus: | \(1444\) | |
Conductor: | \(76\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{76}(43,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1444.l
\(\chi_{1444}(99,\cdot)\) \(\chi_{1444}(415,\cdot)\) \(\chi_{1444}(423,\cdot)\) \(\chi_{1444}(595,\cdot)\) \(\chi_{1444}(967,\cdot)\) \(\chi_{1444}(1111,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | 18.0.75613185918270483380568064.1 |
Values on generators
\((723,1085)\) → \((-1,e\left(\frac{8}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 1444 }(423, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) |
sage: chi.jacobi_sum(n)