Properties

Label 1455.463
Modulus 14551455
Conductor 485485
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,3]))
 
pari: [g,chi] = znchar(Mod(463,1455))
 

Basic properties

Modulus: 14551455
Conductor: 485485
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ485(463,)\chi_{485}(463,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.r

χ1455(22,)\chi_{1455}(22,\cdot) χ1455(463,)\chi_{1455}(463,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.114084125.2

Values on generators

(971,292,781)(971,292,781)(1,i,i)(1,-i,-i)

First values

aa 1-11122447788111113131414161617171919
χ1455(463,a) \chi_{ 1455 }(463, a) 1-111ii1-111i-i1-111ii111-1ii
sage: chi.jacobi_sum(n)
 
χ1455(463,a)   \chi_{ 1455 }(463,a) \; at   a=\;a = e.g. 2