Properties

Label 1455.583
Modulus 14551455
Conductor 55
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,0]))
 
pari: [g,chi] = znchar(Mod(583,1455))
 

Basic properties

Modulus: 14551455
Conductor: 55
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ5(3,)\chi_{5}(3,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.p

χ1455(292,)\chi_{1455}(292,\cdot) χ1455(583,)\chi_{1455}(583,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ5)\Q(\zeta_{5})

Values on generators

(971,292,781)(971,292,781)(1,i,1)(1,-i,1)

First values

aa 1-11122447788111113131414161617171919
χ1455(583,a) \chi_{ 1455 }(583, a) 1-111i-i1-1i-iii11ii1-111i-i1-1
sage: chi.jacobi_sum(n)
 
χ1455(583,a)   \chi_{ 1455 }(583,a) \; at   a=\;a = e.g. 2