Properties

Label 1455.7
Modulus $1455$
Conductor $485$
Order $96$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(96))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,24,31]))
 
pari: [g,chi] = znchar(Mod(7,1455))
 

Basic properties

Modulus: \(1455\)
Conductor: \(485\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(96\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{485}(7,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.di

\(\chi_{1455}(7,\cdot)\) \(\chi_{1455}(13,\cdot)\) \(\chi_{1455}(37,\cdot)\) \(\chi_{1455}(82,\cdot)\) \(\chi_{1455}(112,\cdot)\) \(\chi_{1455}(118,\cdot)\) \(\chi_{1455}(157,\cdot)\) \(\chi_{1455}(187,\cdot)\) \(\chi_{1455}(208,\cdot)\) \(\chi_{1455}(223,\cdot)\) \(\chi_{1455}(232,\cdot)\) \(\chi_{1455}(268,\cdot)\) \(\chi_{1455}(427,\cdot)\) \(\chi_{1455}(508,\cdot)\) \(\chi_{1455}(553,\cdot)\) \(\chi_{1455}(568,\cdot)\) \(\chi_{1455}(592,\cdot)\) \(\chi_{1455}(622,\cdot)\) \(\chi_{1455}(658,\cdot)\) \(\chi_{1455}(763,\cdot)\) \(\chi_{1455}(793,\cdot)\) \(\chi_{1455}(802,\cdot)\) \(\chi_{1455}(847,\cdot)\) \(\chi_{1455}(868,\cdot)\) \(\chi_{1455}(1027,\cdot)\) \(\chi_{1455}(1057,\cdot)\) \(\chi_{1455}(1108,\cdot)\) \(\chi_{1455}(1123,\cdot)\) \(\chi_{1455}(1222,\cdot)\) \(\chi_{1455}(1363,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

\((971,292,781)\) → \((1,i,e\left(\frac{31}{96}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1455 }(7, a) \) \(1\)\(1\)\(e\left(\frac{11}{48}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{25}{96}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{79}{96}\right)\)\(e\left(\frac{47}{96}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{95}{96}\right)\)\(e\left(\frac{21}{32}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1455 }(7,a) \;\) at \(\;a = \) e.g. 2