Properties

Label 1455.76
Modulus $1455$
Conductor $97$
Order $96$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(96))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,53]))
 
pari: [g,chi] = znchar(Mod(76,1455))
 

Basic properties

Modulus: \(1455\)
Conductor: \(97\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(96\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{97}(76,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.dh

\(\chi_{1455}(76,\cdot)\) \(\chi_{1455}(136,\cdot)\) \(\chi_{1455}(181,\cdot)\) \(\chi_{1455}(211,\cdot)\) \(\chi_{1455}(286,\cdot)\) \(\chi_{1455}(301,\cdot)\) \(\chi_{1455}(331,\cdot)\) \(\chi_{1455}(511,\cdot)\) \(\chi_{1455}(526,\cdot)\) \(\chi_{1455}(541,\cdot)\) \(\chi_{1455}(556,\cdot)\) \(\chi_{1455}(736,\cdot)\) \(\chi_{1455}(766,\cdot)\) \(\chi_{1455}(781,\cdot)\) \(\chi_{1455}(856,\cdot)\) \(\chi_{1455}(886,\cdot)\) \(\chi_{1455}(931,\cdot)\) \(\chi_{1455}(991,\cdot)\) \(\chi_{1455}(1081,\cdot)\) \(\chi_{1455}(1096,\cdot)\) \(\chi_{1455}(1126,\cdot)\) \(\chi_{1455}(1141,\cdot)\) \(\chi_{1455}(1171,\cdot)\) \(\chi_{1455}(1201,\cdot)\) \(\chi_{1455}(1246,\cdot)\) \(\chi_{1455}(1276,\cdot)\) \(\chi_{1455}(1321,\cdot)\) \(\chi_{1455}(1351,\cdot)\) \(\chi_{1455}(1381,\cdot)\) \(\chi_{1455}(1396,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

\((971,292,781)\) → \((1,1,e\left(\frac{53}{96}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1455 }(76, a) \) \(-1\)\(1\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{11}{96}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{23}{48}\right)\)\(e\left(\frac{77}{96}\right)\)\(e\left(\frac{85}{96}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{13}{96}\right)\)\(e\left(\frac{23}{32}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1455 }(76,a) \;\) at \(\;a = \) e.g. 2