Properties

Label 1455.811
Modulus 14551455
Conductor 9797
Order 33
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,2]))
 
pari: [g,chi] = znchar(Mod(811,1455))
 

Basic properties

Modulus: 14551455
Conductor: 9797
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ97(35,)\chi_{97}(35,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.i

χ1455(61,)\chi_{1455}(61,\cdot) χ1455(811,)\chi_{1455}(811,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 3.3.9409.1

Values on generators

(971,292,781)(971,292,781)(1,1,e(13))(1,1,e\left(\frac{1}{3}\right))

First values

aa 1-11122447788111113131414161617171919
χ1455(811,a) \chi_{ 1455 }(811, a) 1111e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11
sage: chi.jacobi_sum(n)
 
χ1455(811,a)   \chi_{ 1455 }(811,a) \; at   a=\;a = e.g. 2