Properties

Label 1455.923
Modulus $1455$
Conductor $1455$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,6,3]))
 
pari: [g,chi] = znchar(Mod(923,1455))
 

Basic properties

Modulus: \(1455\)
Conductor: \(1455\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.bj

\(\chi_{1455}(227,\cdot)\) \(\chi_{1455}(338,\cdot)\) \(\chi_{1455}(452,\cdot)\) \(\chi_{1455}(923,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: Number field defined by a degree 8 polynomial

Values on generators

\((971,292,781)\) → \((-1,-i,e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1455 }(923, a) \) \(1\)\(1\)\(1\)\(1\)\(e\left(\frac{3}{8}\right)\)\(1\)\(-i\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1455 }(923,a) \;\) at \(\;a = \) e.g. 2