Properties

Label 147.134
Modulus $147$
Conductor $147$
Order $14$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,4]))
 
pari: [g,chi] = znchar(Mod(134,147))
 

Basic properties

Modulus: \(147\)
Conductor: \(147\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 147.l

\(\chi_{147}(8,\cdot)\) \(\chi_{147}(29,\cdot)\) \(\chi_{147}(71,\cdot)\) \(\chi_{147}(92,\cdot)\) \(\chi_{147}(113,\cdot)\) \(\chi_{147}(134,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.418988153029298748294987.1

Values on generators

\((50,52)\) → \((-1,e\left(\frac{2}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 147 }(134, a) \) \(-1\)\(1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 147 }(134,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 147 }(134,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 147 }(134,·),\chi_{ 147 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 147 }(134,·)) \;\) at \(\; a,b = \) e.g. 1,2