Properties

Label 147.79
Modulus 147147
Conductor 77
Order 33
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2]))
 
pari: [g,chi] = znchar(Mod(79,147))
 

Basic properties

Modulus: 147147
Conductor: 77
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ7(2,)\chi_{7}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 147.e

χ147(67,)\chi_{147}(67,\cdot) χ147(79,)\chi_{147}(79,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ7)+\Q(\zeta_{7})^+

Values on generators

(50,52)(50,52)(1,e(13))(1,e\left(\frac{1}{3}\right))

First values

aa 1-11122445588101011111313161617171919
χ147(79,a) \chi_{ 147 }(79, a) 1111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ147(79,a)   \chi_{ 147 }(79,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ147(79,))   \tau_{ a }( \chi_{ 147 }(79,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ147(79,),χ147(n,))   J(\chi_{ 147 }(79,·),\chi_{ 147 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ147(79,))  K(a,b,\chi_{ 147 }(79,·)) \; at   a,b=\; a,b = e.g. 1,2