Properties

Label 1470.41
Modulus 14701470
Conductor 147147
Order 1414
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,0,5]))
 
Copy content pari:[g,chi] = znchar(Mod(41,1470))
 

Basic properties

Modulus: 14701470
Conductor: 147147
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1414
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ147(41,)\chi_{147}(41,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1470.be

χ1470(41,)\chi_{1470}(41,\cdot) χ1470(251,)\chi_{1470}(251,\cdot) χ1470(461,)\chi_{1470}(461,\cdot) χ1470(671,)\chi_{1470}(671,\cdot) χ1470(1091,)\chi_{1470}(1091,\cdot) χ1470(1301,)\chi_{1470}(1301,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 14.14.2932917071205091238064909.1

Values on generators

(491,1177,1081)(491,1177,1081)(1,1,e(514))(-1,1,e\left(\frac{5}{14}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ1470(41,a) \chi_{ 1470 }(41, a) 1111e(1114)e\left(\frac{11}{14}\right)e(1114)e\left(\frac{11}{14}\right)e(37)e\left(\frac{3}{7}\right)1-1e(114)e\left(\frac{1}{14}\right)e(1314)e\left(\frac{13}{14}\right)1-1e(37)e\left(\frac{3}{7}\right)e(67)e\left(\frac{6}{7}\right)e(17)e\left(\frac{1}{7}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1470(41,a)   \chi_{ 1470 }(41,a) \; at   a=\;a = e.g. 2