from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1470, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,0,5]))
pari: [g,chi] = znchar(Mod(41,1470))
Basic properties
Modulus: | \(1470\) | |
Conductor: | \(147\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{147}(41,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1470.be
\(\chi_{1470}(41,\cdot)\) \(\chi_{1470}(251,\cdot)\) \(\chi_{1470}(461,\cdot)\) \(\chi_{1470}(671,\cdot)\) \(\chi_{1470}(1091,\cdot)\) \(\chi_{1470}(1301,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 14.14.2932917071205091238064909.1 |
Values on generators
\((491,1177,1081)\) → \((-1,1,e\left(\frac{5}{14}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1470 }(41, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(-1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) |
sage: chi.jacobi_sum(n)