Properties

Label 1470.bq
Modulus $1470$
Conductor $245$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,40]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(109,1470))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1470\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 245.t
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.8050468075656610214837511220114705524038488445061950919170859146595001220703125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{1470}(109,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{1470}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{1470}(319,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{1470}(499,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{1470}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{1470}(709,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{1470}(739,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{1470}(919,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{1470}(1129,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{1470}(1159,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{1470}(1339,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{1470}(1369,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{9}{14}\right)\)