Properties

Label 1472.413
Modulus 14721472
Conductor 14721472
Order 1616
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,8]))
 
pari: [g,chi] = znchar(Mod(413,1472))
 

Basic properties

Modulus: 14721472
Conductor: 14721472
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1472.s

χ1472(45,)\chi_{1472}(45,\cdot) χ1472(229,)\chi_{1472}(229,\cdot) χ1472(413,)\chi_{1472}(413,\cdot) χ1472(597,)\chi_{1472}(597,\cdot) χ1472(781,)\chi_{1472}(781,\cdot) χ1472(965,)\chi_{1472}(965,\cdot) χ1472(1149,)\chi_{1472}(1149,\cdot) χ1472(1333,)\chi_{1472}(1333,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.0.47336086032831043196344263117897728.1

Values on generators

(1151,645,833)(1151,645,833)(1,e(1116),1)(1,e\left(\frac{11}{16}\right),-1)

First values

aa 1-11133557799111113131515171719192121
χ1472(413,a) \chi_{ 1472 }(413, a) 1-111e(116)e\left(\frac{1}{16}\right)e(316)e\left(\frac{3}{16}\right)e(38)e\left(\frac{3}{8}\right)e(18)e\left(\frac{1}{8}\right)e(1516)e\left(\frac{15}{16}\right)e(516)e\left(\frac{5}{16}\right)iii-ie(516)e\left(\frac{5}{16}\right)e(716)e\left(\frac{7}{16}\right)
sage: chi.jacobi_sum(n)
 
χ1472(413,a)   \chi_{ 1472 }(413,a) \; at   a=\;a = e.g. 2