Properties

Label 148.23
Modulus $148$
Conductor $148$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(148, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,5]))
 
pari: [g,chi] = znchar(Mod(23,148))
 

Basic properties

Modulus: \(148\)
Conductor: \(148\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 148.l

\(\chi_{148}(23,\cdot)\) \(\chi_{148}(51,\cdot)\) \(\chi_{148}(103,\cdot)\) \(\chi_{148}(119,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.728750578808669851648.1

Values on generators

\((75,113)\) → \((-1,e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 148 }(23, a) \) \(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 148 }(23,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 148 }(23,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 148 }(23,·),\chi_{ 148 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 148 }(23,·)) \;\) at \(\; a,b = \) e.g. 1,2