Properties

Label 1480.1109
Modulus $1480$
Conductor $1480$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1480, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,1,1]))
 
pari: [g,chi] = znchar(Mod(1109,1480))
 

Kronecker symbol representation

sage: kronecker_character(1480)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{1480}{\bullet}\right)\)

Basic properties

Modulus: \(1480\)
Conductor: \(1480\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1480.j

\(\chi_{1480}(1109,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{370}) \)

Values on generators

\((1111,741,297,1001)\) → \((1,-1,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1480 }(1109, a) \) \(1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1480 }(1109,a) \;\) at \(\;a = \) e.g. 2