Properties

Label 1480.1259
Modulus $1480$
Conductor $40$
Order $2$
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1480, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1,0]))
 
pari: [g,chi] = znchar(Mod(1259,1480))
 

Basic properties

Modulus: \(1480\)
Conductor: \(40\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{40}(19,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1480.i

\(\chi_{1480}(1259,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-10}) \)

Values on generators

\((1111,741,297,1001)\) → \((-1,-1,-1,1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1480 }(1259, a) \) \(-1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1480 }(1259,a) \;\) at \(\;a = \) e.g. 2