from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1480, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,0,3,4]))
pari: [g,chi] = znchar(Mod(137,1480))
Basic properties
Modulus: | \(1480\) | |
Conductor: | \(185\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{185}(137,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1480.cv
\(\chi_{1480}(137,\cdot)\) \(\chi_{1480}(417,\cdot)\) \(\chi_{1480}(433,\cdot)\) \(\chi_{1480}(713,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.0.6860311433439453125.1 |
Values on generators
\((1111,741,297,1001)\) → \((1,1,i,e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 1480 }(137, a) \) | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(i\) |
sage: chi.jacobi_sum(n)