Properties

Label 1512.793
Modulus $1512$
Conductor $63$
Order $3$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,2,2]))
 
pari: [g,chi] = znchar(Mod(793,1512))
 

Basic properties

Modulus: \(1512\)
Conductor: \(63\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{63}(58,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1512.q

\(\chi_{1512}(793,\cdot)\) \(\chi_{1512}(1369,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 3.3.3969.1

Values on generators

\((1135,757,785,1081)\) → \((1,1,e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 1512 }(793, a) \) \(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1512 }(793,a) \;\) at \(\;a = \) e.g. 2