from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1520, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,27,18,22]))
pari: [g,chi] = znchar(Mod(1459,1520))
Basic properties
Modulus: | \(1520\) | |
Conductor: | \(1520\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1520.en
\(\chi_{1520}(59,\cdot)\) \(\chi_{1520}(219,\cdot)\) \(\chi_{1520}(299,\cdot)\) \(\chi_{1520}(459,\cdot)\) \(\chi_{1520}(659,\cdot)\) \(\chi_{1520}(699,\cdot)\) \(\chi_{1520}(819,\cdot)\) \(\chi_{1520}(979,\cdot)\) \(\chi_{1520}(1059,\cdot)\) \(\chi_{1520}(1219,\cdot)\) \(\chi_{1520}(1419,\cdot)\) \(\chi_{1520}(1459,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((191,1141,1217,401)\) → \((-1,-i,-1,e\left(\frac{11}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1520 }(1459, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) |
sage: chi.jacobi_sum(n)