Properties

Label 1520.1459
Modulus $1520$
Conductor $1520$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,27,18,22]))
 
pari: [g,chi] = znchar(Mod(1459,1520))
 

Basic properties

Modulus: \(1520\)
Conductor: \(1520\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1520.en

\(\chi_{1520}(59,\cdot)\) \(\chi_{1520}(219,\cdot)\) \(\chi_{1520}(299,\cdot)\) \(\chi_{1520}(459,\cdot)\) \(\chi_{1520}(659,\cdot)\) \(\chi_{1520}(699,\cdot)\) \(\chi_{1520}(819,\cdot)\) \(\chi_{1520}(979,\cdot)\) \(\chi_{1520}(1059,\cdot)\) \(\chi_{1520}(1219,\cdot)\) \(\chi_{1520}(1419,\cdot)\) \(\chi_{1520}(1459,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((191,1141,1217,401)\) → \((-1,-i,-1,e\left(\frac{11}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1520 }(1459, a) \) \(1\)\(1\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{23}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1520 }(1459,a) \;\) at \(\;a = \) e.g. 2