Properties

Label 153.145
Modulus 153153
Conductor 1717
Order 88
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(145,153))
 

Basic properties

Modulus: 153153
Conductor: 1717
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ17(9,)\chi_{17}(9,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 153.l

χ153(19,)\chi_{153}(19,\cdot) χ153(100,)\chi_{153}(100,\cdot) χ153(127,)\chi_{153}(127,\cdot) χ153(145,)\chi_{153}(145,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: Q(ζ17)+\Q(\zeta_{17})^+

Values on generators

(137,37)(137,37)(1,e(18))(1,e\left(\frac{1}{8}\right))

First values

aa 1-111224455778810101111131314141616
χ153(145,a) \chi_{ 153 }(145, a) 1111i-i1-1e(58)e\left(\frac{5}{8}\right)e(38)e\left(\frac{3}{8}\right)iie(38)e\left(\frac{3}{8}\right)e(78)e\left(\frac{7}{8}\right)1-1e(18)e\left(\frac{1}{8}\right)11
sage: chi.jacobi_sum(n)
 
χ153(145,a)   \chi_{ 153 }(145,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ153(145,))   \tau_{ a }( \chi_{ 153 }(145,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ153(145,),χ153(n,))   J(\chi_{ 153 }(145,·),\chi_{ 153 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ153(145,))  K(a,b,\chi_{ 153 }(145,·)) \; at   a,b=\; a,b = e.g. 1,2