from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1547, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,4,3]))
pari: [g,chi] = znchar(Mod(43,1547))
Basic properties
Modulus: | \(1547\) | |
Conductor: | \(221\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{221}(43,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1547.ez
\(\chi_{1547}(36,\cdot)\) \(\chi_{1547}(43,\cdot)\) \(\chi_{1547}(127,\cdot)\) \(\chi_{1547}(134,\cdot)\) \(\chi_{1547}(400,\cdot)\) \(\chi_{1547}(491,\cdot)\) \(\chi_{1547}(1226,\cdot)\) \(\chi_{1547}(1317,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.1313089701153189172362017790113081686746246646817.1 |
Values on generators
\((885,834,547)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{1}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1547 }(43, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage: chi.jacobi_sum(n)