Properties

Label 1547.947
Modulus $1547$
Conductor $1547$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1547, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([16,28,39]))
 
pari: [g,chi] = znchar(Mod(947,1547))
 

Basic properties

Modulus: \(1547\)
Conductor: \(1547\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1547.fv

\(\chi_{1547}(37,\cdot)\) \(\chi_{1547}(46,\cdot)\) \(\chi_{1547}(214,\cdot)\) \(\chi_{1547}(487,\cdot)\) \(\chi_{1547}(583,\cdot)\) \(\chi_{1547}(592,\cdot)\) \(\chi_{1547}(639,\cdot)\) \(\chi_{1547}(669,\cdot)\) \(\chi_{1547}(683,\cdot)\) \(\chi_{1547}(912,\cdot)\) \(\chi_{1547}(942,\cdot)\) \(\chi_{1547}(947,\cdot)\) \(\chi_{1547}(1094,\cdot)\) \(\chi_{1547}(1229,\cdot)\) \(\chi_{1547}(1367,\cdot)\) \(\chi_{1547}(1493,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((885,834,547)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{7}{12}\right),e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 1547 }(947, a) \) \(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{23}{48}\right)\)\(i\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{35}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1547 }(947,a) \;\) at \(\;a = \) e.g. 2