Properties

Label 155.h
Modulus $155$
Conductor $31$
Order $5$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(155, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(16,155))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(155\)
Conductor: \(31\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(5\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 31.d
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 5.5.923521.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{155}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{155}(66,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{155}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{155}(126,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\)